Theoretical and experimental signal - to - noise ratio assessment in new direction sensing continuous - wave Doppler lidar

نویسندگان

  • Torben Krogh
  • T Mikkelsen
چکیده

A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √ 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal processing and calibration of continuous-wave focused CO(2) Doppler lidars for atmospheric backscatter measurement.

Two continuous-wave (CW) focused CO(2) Doppler lidars (9.1 and 10.6 µm) were developed for airborne in situ aerosol backscatter measurements. The complex path of reliably calibrating these systems, with different signal processors, for accurate derivation of atmospheric backscatter coefficients is documented. Lidar calibration for absolute backscatter measurement for both lidars is based on ran...

متن کامل

Measurement of ocean wave height and direction by means of HF radar: an empirical approach

High-frequency (HF) radars have been used since 20 years for remotely sensing ocean surface currents and ocean waves. Backscattered Doppler spectra contain two discrete lines, the frequencies of which (Bragg frequency) determine the current speed, and four continuous side bands, which allow to apply inversion techniques for retrieving ocean wave spectra. Recently, a new HF radar has been develo...

متن کامل

Superior signal-to-noise ratio of a new AA1 sequence for random-modulation continuous-wave lidar.

In an earlier work [Proc. SPIE 4484, 216 (2001)] we proposed a new AA1 modulation sequence for random-modulation continuous-wave lidar. It possesses significantly better signal properties than other pseudorandom codes (the M, A1, and A2 sequences). We derive and compare the signal-to-noise ratio (SNR) of the new AA1 sequence with those of previous modulation sequences. Using a figure of merit p...

متن کامل

Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers.

We introduce a new approach to coherent lidar range-Doppler sensing by utilizing random-noise illuminating waveforms and a quantum-optical, parallel sensor based on spatial-spectral holography (SSH) in a cryogenically cooled inhomogeneously broadened absorber (IBA) crystal. Interference between a reference signal and the lidar return in the spectrally selective absorption band of the IBA is use...

متن کامل

The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

The signal processing aspect of a 2-μm wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017